Networking with TCP/IP.

Linux supports a full implementation of the TCP/IP (Transport Control
Protocol/Internet Protocol) networking protocols. TCP/IP has become the most
successful mechanism for networking computers worldwide. With Linux and an
Ethernet card, you can network your machine to a local area network, or

(with the proper network connections) to the Internet--the worldwide TCP/IP
network.

Hooking up a small LAN of UNIX machines is easy. It simply requires an
Ethernet controller in each machine and the appropriate Ethernet cables and
other hardware. Or, if your business or university provides access to the
Internet, you can easily add your Linux machine to this network.

The current implementation of TCP/IP and related protocols for Linux
is called ""NET-3," and before that, "NET-2." This has no relationship to
the so-called NET-2 release of BSD UNIX; instead, ""NET-3" in this context
means the second implementation of TCP/IP for Linux.

Linux NET-3 also supports SLIP--Serial Line Internet Protocol and
PPP--Point-to-Point Protocol. SLIP and PPP allow you to have dialup Internet
access using a modem. If your business or university provides SLIP or PPP
access, you can dial in to the SLIP or PPP server and put your machine on
the Internet over the phone line. Alternately, if your Linux machine also
has Ethernet access to the Internet, you can set up your Linux box as a SLIP
or PPP server.

For complete information on setting up TCP/IP under Linux, we encourage you
to read the Linux NET-3 HOWTO, available via anonymous FTP from
sunsite.unc.edu. The NET-3 HOWTO is a complete guide to configuring TCP/IP,
including Ethernet and SLIP or PPP connections, under Linux. The Linux
Ethernet HOWTO is a related document that describes configuration of various
Ethernet card drivers for Linux. The Linux Network Administrator's Guide,

from the Linux Documentation Project, is also available. See Appendix A for
more information on these documents.

Also of interest is the book TCP/IP Network Administration, by Craig Hunt.
It contains complete information on using and configuring TCP/IP on UNIX
systems.

TCP/IP Hardware requirements.
You can use Linux TCP/IP without any networking hardware at

all--configuring "“loopback” mode allows you to talk to yourself. This is
necessary for some applications and games which use the “loopback" network

device.

However, if you want to use Linux with an Ethernet TCP/IP network, you
need an Ethernet card. Common cards such as the 3com 3c503, HP PCLAN (27245
and 27xxx series), Western Digital WD80x3, and Novell NE2000/NE1000 are
supported, as well as many more. See the Linux Ethernet and Hardware HOWTOs
for details.

There are a few common situations that you should watch out concerning
supported cards: 1) Several cards are support but offer shoddy performance

or have other restrictions. Examples are the 3Com 3C501 which works but

gives absolutely horrible performance and the Racal-Interlan N16510 using

the am7990 lance chip which doesn't work with more than 16 megabytes of RAM.
In the same vein, many cards are NE1000/NE2000 compatible clones and can
have various problems. See the Linux Ethernet HOWTO for a more complete
discussion of Linux Ethernet hardware compatibility.

Linux also supports SLIP and PPP, which allows you to use a modem to access
the Internet over the phone line. In this case, you'll need a modem

compatible with your SLIP or PPP server--most servers require a 14.4bps
V.32bis modem at a minimum . Performance is greatly improved with a 33.6bps
or higher modem.

6.1.1 Configuring TCP/IP on your system.

In this section we're going to discuss how to configure an Ethernet TCP/IP
connection on your system. Note that this method should work for many
systems, but certainly not all. This discussion should be enough to get you
on the right path to configuring the network parameters of your machine, but
there are numerous caveats and fine details not mentioned here. We direct
you to the Linux Network Administrators' Guide and the NET-3-HOWTO for more
information.[qif]

First, we assume that you have a Linux system that has the TCP/IP software
installed. This includes basic clients such as telnet and ftp, system
administration commands such as ifconfig and route (usually found in /etc),
and networking configuration files (such as /etc/hosts). The other
Linux-related networking documents described above explain how to go about
installing the Linux networking software if you do not have it already.

We also assume that your kernel has been configured and compiled with TCP/IP
support enabled. See Section 4.9 for information on compiling your kernel.

To enable networking, you must answer "“yes" to the appropriate questions
during the make config step, and rebuild the kernel.

Once this has been done, you must modify a number of configuration files

used by NET-3. For the most part this is a simple procedure. Unfortunately,
however, there is wide disagreement between Linux distributions as to where
the various TCP/IP configuration files and support programs should go. Much
of the time, they can be found in /etc, but in other cases may be found in
lusr/etc, /usr/etc/inet, or other bizarre locations. In the worst case

you'll have to use the find command to locate the files on your system. Also
note that not all distributions keep the NET-3 configuration files and

software in the same location--they may be spread across several
directories.

The following information applies primarily to Ethernet connections. If
you're planning to use SLIP or PPP, read this section to understand the
concepts, and follow the more specific instructions in the following
sections.

Your network configuration.

Before you can configure TCP/IP, you need to determine the following
information about your network setup. In most cases, your local network
administrator can provide you with this information.

* I[P address. This is the unique machine address in dotted-decimal
format. An example is 128.253.153.54. Your network admins will provide
you with this number.

If you're only configuring loopback mode (i.e. no SLIP, no Ethernet
card, just TCP/IP connections to your own machine) then your IP address
is 127.0.0.1.

* Your network mask (*"netmask"). This is a dotted quad, similar to the
IP address, which determines which portion of the IP address specifies
the subnetwork number, and which portion specifies the host on that
subnet. (If you're shaky on these TCP/IP networking terms, we suggest
reading some introductory material on network administration.) The
network mask is a pattern of bits, which when overlayed onto an address
on your network, will tell you which subnet that address lives on. This
is very important for routing, and if you find, for example, that you
can happily talk to people outside your network, but not to some people
within your network, there is a good chance that you have an incorrect
mask specified.

Your network administrators will have chosen the netmask when the
network was designed, and therefore they should be able to supply you
with the correct mask to use. Most networks are class C subnetworks

which use 255.255.255.0 as their netmask. Class B networks use
255.255.0.0. The NET-3 code will automatically select a mask that
assumes no subnetting as a default if you do not specify one.

This applies as well to the loopback port. Since the loopback port's
address is always 127.0.0.1, the netmask for this port is always
255.0.0.0. You can either specify this explicitly or rely on the
default mask.

* Your network address. This is your IP address masked bitwise-ANDed the
netmask. For example, if your netmask is 255.255.255.0, and your IP
address is 128.253.154.32, your network address is 128.253.154.0. With
a netmask of 255.255.0.0, this would be 128.253.0.0.

If you're only using loopback, you don't have a network address.

* Your broadcast address. The broadcast address is used to broadcast
packets to every machine on your subnet. Therefore, if the host number
of machines on your subnet is given by the last byte of the IP address
(netmask 255.255.255.0), your broadcast address will be your network
address ORed with 0.0.0.255.

For example, if your IP address is 128.253.154.32, and your netmask is
255.255.255.0, your broadcast address is 128.253.154.255.

Note that for historical reasons, some networks are setup to use the
network address as the broadcast address, if you have any doubt, check
with your network administrators. (In many cases, it will suffice to
duplicate the network configuration of other machines on your subnet,
substituting your own IP address, of course.)

If you're only using loopback, you don't have a broadcast address.

* Your gateway address. This is the address of the machine which is your
“gateway" to the outside world (i.e. machines not on your subnet). In
many cases the gateway machine has an IP address identical to yours but
with a ".1" as its host address; e.g., if your IP address is
128.253.154.32, your gateway might be 128.253.154.1. Your network
admins will provide you with the IP address of your gateway.

In fact, you may have multiple gateways. A gateway is simply a machine
that lives on two different networks (has IP addresses on different
subnets), and routes packets between them. Many networks have a single

gateway to ""the outside world" (the network directly adjacent to your
own), but in some cases you will have multiple gateways--one for each
adjacent network.

If you're only using loopback, you don't have a gateway address. The
same is true if your network is isolated from all others.

* Your name server address. Most machines on the net have a name server
which translates host names into IP addresses for them. Your network
admins will tell you the address of your name server. You can also run
a server on your own machine by running named, in which case the name
server address is 127.0.0.1. Unless you absolutely must run your own
name server, we suggest using the one provided to you on the network
(if any). Configuration of named is another issue altogether; our
priority at this point is to get you talking to the network. You can
deal with name resolution issues later.

If you're only using loopback, you don't have a name server address.

SLIP/PPP users: You may or may not require any of the above information,
except for a name server address. When using SLIP, your IP address is
usually determined in one of two ways: Either (a) you have a "static" IP
address, which is the same every time you connect to the network, or (b) you
have a “"dynamic" IP address, which is allocated from a pool available
addresses when you connect to the server. In the following section on SLIP
configuration this is covered in more detail.

NET-3 supports full routing, multiple routes, subnetworking (at this stage

on byte boundaries only), the whole nine yards. The above describes most
basic TCP/IP configurations. Yours may be quite different: when in doubt,
consult your local network gurus and check out the man pages for route and
ifconfig. Configuring TCP/IP networks is very much beyond the scope of this
book; the above should be enough to get most people started.

The networking rc files.

rc files are systemwide configuration scripts executed at boot time by
init, which start up all of the basic system daemons (such as sendmail,
cron, etc.) and configure things such as the network parameters, system host
name, and so on. rc files are usually found in the directory /etc/rc.d but
on other systems may be in /etc. In general Slackware distributions use the
files rc.inet1, etc. in /etc/rc.d whereas the RedHat distributions use a
series of directories

Here, we're going to describe the rc files used to configure

TCP/IP. There are two of them: rc.inet1 and rc.inet2. rc.inet1 is used to
configure the basic network parameters (such as IP addresses and routing
information) and rc.inet2 fires up the TCP/IP daemons (telnetd, ftpd, and so
forth).

Many systems combine these two files into one, usually called
rc.inet or rc.net. The names given to your rc files doesn't matter, as long
as they perform the correct functions and are executed at boot time by init.
To ensure this, you may need to edit /etc/inittab and uncomment lines to
execute the appropriate rc file(s). In the worst case you will have to
create the rc.inet1 and rc.inet2 files from scratch and add entries for them
to /etc/inittab.

As we said, rc.inet1 configures the basic network interface. This includes

your IP and network address, and the routing table information for your
network. The routing tables are used to route outgoing (and incoming)

network datagrams to other machines. On most simple configurations, you have
three routes: One for sending packets to your own machine, another for
sending packets to other machines on your network, and another for sending
packets to machines outside of your network (through the gateway machine).
Two programs are used to configure these parameters: ifconfig and route.

Both of these are usually found in /etc.

ifconfig is used for configuring the network device interface with
the parameters that it requires to function, such as the IP address, network
mask, broadcast address and the like. Route is used to create and modify
entries in the routing table.

For most configurations, an rc.inet1 file that looks like the following
should work. You will, of course, have to edit this for your own system. Do
not use the sample IP and network addresses listed here for your own system;
they correspond to an actual machine on the Internet.

[tscreen6272]

Again, you may have to tweak this file somewhat to get it to work. The above
should be sufficient for the majority of simple network configurations, but
certainly not all.

rc.inet2 starts up various servers used by the TCP/IP suite. The most
important of these is inetd. Inetd sits in the background and listens to
various network ports. When a machine tries to make a connection to a
certain port (for example, the incoming telnet port), inetd forks off a copy
of the appropriate daemon for that port (in the case of the telnet port,
inetd starts in.telnetd). This is simpler than running many separate,
standalone daemons (e.g., individual copies of telnetd, ftpd, and so

forth)--inetd starts up the daemons only when they are needed.

Syslogd is the system logging daemon--it accumulates log messages
from various applications and stores them into log files based on the
configuration information in /etc/syslogd.conf. routed is a server used to
maintain dynamic routing information. When your system attempts to send
packets to another network, it may require additional routing table entries
in order to do so. routed takes care of manipulating the routing table
without the need for user intervention.

Our example rc.inet2, below, only starts up the bare minimum of servers.
There are many other servers as well--many of which have to do with NFS
configuration. When attempting to setup TCP/IP on your system, it's usually
best to start with a minimal configuration and add more complex pieces (such
as NFS) when you have things working.

Note that in the below file, we assume that all of the network daemons are
held in /etc. As usual, edit this for your own configuration.

[tscreen6302]

Among the various additional servers that you may want to start in
rc.inet2 is named. Named is a name server--it is responsible for translating
(local) IP addresses to names, and vice versa. If you don't have a name
server elsewhere on the network, or want to provide local machine names to
other machines in your domain, it may be necessary to run named. (For most
configurations it is not necessary, however.) Named configuration is
somewhat complex and requires planning; we refer interested readers to a
good book on TCP/IP network administration.

The /etc/hosts file.

/etc/hosts contains a list of IP addresses and the host names that they
correspond to. In general, /etc/hosts only contains entries for your local
machine, and perhaps other ““important" machines (such as your name server
or gateway). Your local name server will provide address-to-name mappings
for other machines on the network, transparently.

For example, if your machine is loomer.vpizza.com with the IP address
128.253.154.32, your /etc/hosts would look like:

[tscreen6318]

If you're only using loopback, the only line in /etc/hosts should be for
127.0.0.1, with both localhost and your host name after it.

The /etc/networks file.

The /etc/networks file lists the names and addresses of your own, and
other, networks. It is used by the route command, and allows you to specify
a network by name, should you so desire.

Every network you wish to add a route to using the route command
(generally called from rc.inet1--see above) must have an entry in
letc/networks.

As an example,
[tscreen6333]

The /etc/host.conf file.

This file is used to specify how your system will resolve host names. It
should contain the two lines:
[tscreen6338]
These lines tell the resolve libraries to first check the /etc/hosts file
for any names to lookup, and then to ask the name server (if one is
present). The multi entry allows you to have multiple IP addresses for a
given machine name in /etc/hosts.

The /etc/resolv.conf file.

This file configures the name resolver, specifying the address of your
name server (if any) and your domain name. Your domain name is your
fully-qualified host name (if you're a registered machine on the Internet,
for example), with the host name chopped off. That is, if your full host
name is loomer.vpizza.com, your domain name is just vpizza.com.

For example, if your machine is goober.norelco.com, and has a name server at
the address 128.253.154.5, your /etc/resolv.conf would look like:

[tscreen6351]

You can specify more than one name server--each must have a nameserver line
of its own in resolv.conf.

Setting your host name.

You should set your system host name with the hosthame command. This is
usually called from /etc/rc or /etc/rc.local; simply search your system rc
files to determine where it is invoked. For example, if your (full) host
name is loomer.vpizza.com, edit the appropriate rc file to execute the
command:
[tscreen6364]
Note that the hosthname executable may not be found in /bin on your system.

Trying it out.

Once you have all of these files set up, you should be able to reboot your
new kernel and attempt to use the network. There are many places where
things can go wrong, so it's a good idea to test individual aspects of the
network configuration (e.g., it's probably not a good idea to test your
network configuration by firing up Mosaic over a network-based X
connection).

You can use the netstat command to display your routing tables; this is
usually the source of the most trouble. The netstat man page describes the
exact syntax of this command in detail. In order to test network
connectivity, we suggest using a client such as telnet to connect to
machines both on your local subnetwork and external networks. This will help
to narrow down the source of the problem. (For example, if you're unable to
connect to local machines, but can connect to machines on other networks,
more than likely there is a problem with your netmask and routing table
configuration). You can also invoke the route command directly (as root) to
play with the entries in your routing table.

You should also test network connectivity by specifying IP addresses
directly, instead of host names. For example, if you have problems with the
command

[tscreen6377]

the cause may be incorrect name server configuration. Try using the actual
IP address of the machine in question; if that works, then you know your
basic network setup is (more than likely) correct, and the problem lies in
your specification of the name server address.

Debugging network configurations can be a difficult task, and we can't begin
to cover it here. If you are unable to get help from a local guru we

strongly suggest reading the Linux Network Administrators' Guide from the
LDP.

6.1.2 SLIP configuration.

SLIP (Serial Line Internet Protocol) allows you to use TCP/IP over a
serial line, be that a phone line, with a dialup modem, or a leased
asynchronous line of some sort. Of course, to use SLIP you'll need access to
a dial-in SLIP server in your area. Many universities and businesses provide
SLIP access for a modest fee.

There are two major SLIP-related programs available--dip and slattach.
Both of these programs are used to initiate a SLIP connection over a serial
device. It is necessary to use one of these programs in order to enable
SLIP--it will not suffice to dial up the SLIP server (with a communications

program such as kermit) and issue ifconfig and route commands. This is
because dip and slattach issue a special ioctl() system call to seize
control of the serial device to be used as a SLIP interface.

dip can be used to dial up a SLIP server, do some handshaking to login to
the server (exchanging your username and password, for example) and then
initiate the SLIP connection over the open serial line. slattach, on the

other hand, does very little other than grab the serial device for use by

SLIP. It is useful if you have a permanent line to your SLIP server and no
modem dialup or handshaking is necessary to initiate the connection. Most
dialup SLIP users should use dip, on the other hand.

dip can also be used to configure your Linux system as a SLIP server, where
other machines can dial into your own and connect to the network through a
secondary Ethernet connection on your machine. See the documentation and man
pages for dip for more information on this procedure.

SLIP is quite unlike Ethernet, in that there are only two machines
on the "network"--the SLIP host (that's you) and the SLIP server. For this
reason, SLIP is often referred to as a ““point-to-point" connection. A
generalization of this idea, known as PPP (Point to Point Protocol) has also
been implemented for Linux.

When you initiate a connection to a SLIP server, the SLIP server will give

you an IP address based on (usually) one of two methods. Some SLIP servers
allocate "“static" IP addresses--in which case your IP address will be the

same every time you connect to the server. However, many SLIP servers
allocate IP addresses dynamically--in which case you receive a different IP
address each time you connect. In general, the SLIP server will print the
values of your IP and gateway addresses when you connect. dip is capable of
reading these values from the output of the SLIP server login session and
using them to configure the SLIP device.

Essentially, configuring a SLIP connection is just like configuring for
loopback or ethernet. The main differences are discussed below. Read the
previous section on configuring the basic TCP/IP files, and apply the
changes described below.

Static IP address SLIP connections using dip.

If you are using a static-allocation SLIP server, you may want to
include entries for your IP address and host name in /etc/hosts. Also,
configure these files listed in the above section: rc.inet2, host.conf, and
resolv.conf.

Also, configure rc.inet1, as described above. However, you only want to

execute ifconfig and route commands for the loopback device. If you use dip
to connect to the SLIP server, it will execute the appropriate ifconfig and
route commands for the SLIP device for you. (If you're using slattach, on
the other hand, you will need to include ifconfig/route commands in rc.inet1
for the SLIP device--see below.)

dip should configure your routing tables appropriately for the SLIP

connection when you connect. In some cases, however, dip's behavior may not
be correct for your configuration, and you'll have to run ifconfig or route
commands by hand after connecting to the server with dip (this is most

easily done from within a shell script that runs dip and immediately

executes the appropriate configuration commands). Your gateway is, in most
cases, the address of the SLIP server. You may know this address before
hand, or the gateway address will be printed by the SLIP server when you
connect. Your dip chat script (described below) can obtain this information

from the SLIP server.

ifconfig may require use of the pointopoint argument, if dip doesn't

configure the interface correctly. For example, if your SLIP server address

is 128.253.154.2, and your |IP address is 128.253.154.32, you may need to run
the command

[tscreen6437]

as root, after connecting with dip. The man pages for ifconfig will come in
handy.

Note that SLIP device names used with the ifconfig and route commands
are sl0, sl1 and so on (as opposed to ethO, eth1, etc. for Ethernet
devices).

In Section 6.1.2, below, we explain how to configure dip to connect to the
SLIP server.

Static IP address SLIP connections using slattach.

If you have a leased line or cable running directly to your SLIP
server, then there is no need to use dip to initiate a connection. slattach
can be used to configure the SLIP device instead.

In this case, your /etc/rc.inet1 file should look something like the
following:
[tscreen6459]

slattach allocates the first unallocated SLIP device (slO, sl1, etc.) to the
serial line specified.

Note that the first parameter to slattach is the SLIP protocol to use. At

present the only valid values are slip and cslip. Slip is regular SLIP, as

you would expect, and cslip is SLIP with datagram header compression. In
most cases you should use cslip; however, if you seem to be having problems
with this, try slip.

If you have more than one SLIP interface then you will have routing
considerations to make. You will have to decide what routes to add, and
those decisions can only be made on the basis of the actual layout of your
network connections. A book on TCP/IP network configuration, as well as the
man pages to route, will be of use.

Dynamic IP address SLIP connections using dip.

If your SLIP server allocates an IP address dynamically, then you
certainly don't know your address in advance--therefore, you can't include
an entry for it in /etc/hosts. (You should, however, include an entry for
your host with the loopback address, 127.0.0.1.)

Many SLIP servers print your IP address (as well as the server's address)
when you connect. For example, one type of SLIP server prints a string such
as,

[tscreen6477]

dip can capture these numbers from the output of the server and use them to
configure the SLIP device.

See page [gif] , above, for information on configuring your various TCP/IP

files for use with SLIP. Below, we explain how to configure dip to connect
to the SLIP server.

Using dip.

dip can simplify the process of connecting to a SLIP server, logging in,
and configuring the SLIP device. Unless you have a leased line running to
your SLIP server, dip is the way to go.

To use dip, you'll need to write a "“chat script" which contains a list
of commands used to communicate with the SLIP server at login time. These
commands can automatically send your user name/password to the server, as
well as get information on your IP address from the server.

Here is an example dip chat script, for use with a dynamic IP address
server. For static servers, you will need to set the variables $local and
$remote to the values of your local IP address and server IP address,

respectively, at the top of the script. See the dip man page for details.
[tscreen6494]

dip automatically executes ifconfig and route commands based on the values
of the variables $local and $remote. Here, those variables are assigned

using the get...remote command, which obtains text from the SLIP server and
assigns it to the named variable.

If the ifconfig and route commands that dip runs for you don't work, you can
either run the correct commands in a shell script after executing dip, or
modify the source for dip itself. Running dip with the -v option will print
debugging information while the connection is being set up, which should
help you to determine where things might be going awry.

Now, in order to run dip and open the SLIP connection, you can use a command
such as:

[tscreen6510]

Where the various dip files, and the chat script (mychat.dip), are stored in
/etc/dip.

The above discussion should be enough to get you well on your way to talking
to the network, either via Ethernet or SLIP. Again, we strongly suggest

looking into a book on TCP/IP network configuration, especially if your
network has any special routing considerations, other than those mentioned
here.

Dial-up networking and PPP.

Linux supports a full implementation of the PPP (Point-to-Point) networking
protocols. PPP is a mechanism for creating and running IP (the Internet
Protocol) and other network protocols over a serial connection (using a
null-modem cable), over a telnet established link or a link made using
modems and telephone lines (and of course using digital lines such as ISDN).
This section will only cover configuring PPP as a client connecting via an
analog modem to a remote machine that provides PPP dialup service.

For complete information on setting up PPP under Linux, we encourage you to
read the Linux PPP HOWTO, available via anonymous FTP from sunsite.unc.edu.
The PPP HOWTO is a complete guide to configuring PPP, including modem, ISDN
and null-modem cables, under Linux. Much of the information in this section

was gleaned from this document. The Linux Network Administrator's Guide,

from the Linux Documentation Project, is also available. See Appendix A for

more information on these documents.

6.2.1 What you need to get started.

We assume that your kernel has been configured and compiled with TCP/IP
support enabled. See Section 4.9 for information on compiling your kernel.

To enable networking, you must answer ""yes" to the appropriate questions
during the make config step, and rebuild the kernel. We also assume that ppp
has been compiled and installed on your system as well. We assume that you
are using a Linux 1.2.x kernel with the PPP 2.1.2 software or Linux
1.3.X/2.0.x and PPP 2.2.0. At the time of writing, the latest official

version of PPP available for Linux is ppp-2.2f. Please see the kerneld
mini-HOWTO if you plan to use modules to load ppp into your kernel. It is
highly recommended that you use a version of the Linux kernel and the
appropriate PPP version that are known to be stable together.

You should also read

* the documentation that comes with the PPP package;

* the pppd and chat man pages; (use man chat and man pppd to explore
these)

* the Linux Network Administration Guide (NAG);

* the Net-2/3 HOWTO;

* Linux kernel documentation installed in /usr/src/linux/Documentation
when you install the Linux source code;

* The modem setup information page--see Modem Setup Information
(http://www.in.net/info/modems/index.html)

* The excellent Unix/Linux books published by O'Reilly and Associates.
See (O'Reilly and Associates On-Line catalog (http://www.ora.com/). If
you are new to Unix/Linux, run (don't walk) to your nearest computer
book shop and invest in a number of these immediately!

* The PPP-FAQ maintained by Al Longyear, available from
(ftp://sunsite.unc.edu/pub/Linux/docs/fags; see Appendix B). This
contains a great deal of useful information in question/answer format
that is very useful when working out why PPP is not working (properly).

6.2.2 An overview of the steps involved.

There are several steps to setting up your system to use PPP. We recommend
that you read through all of these steps thoroughly before attempting to
actually bring up a PPP connection. Each of these steps will be discussed in
detail later.

1. Make sure that TCP/IP support is compiled into your kernel.
2. Make sure that PPP support is compiled into your kernel either
statically or as a loadable module.
3. Make sure that PPP software is compiled and installed on your systems.

4. Make sure that you have a modem configured and installed/attached to
your computer and that you know which serial port

